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A LOGICAL PROCESS CALCULUS�

RANCE CLEAVELANDy AND GERALD L�UTTGENz

Abstract. This paper presents the Logical Process Calculus (LPC), a formalism that supports hetero-

geneous system speci�cations containing both operational and declarative subspeci�cations. Syntactically,

LPC extends Milner's Calculus of Communicating Systems with operators from the alternation{free linear{

time �{calculus (LT�). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's

and DeNicola's must{testing preorder as well as LT�'s satisfaction relation, while being compositional for

all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of

(i) both minimal and maximal �xed{point operators and (ii) an unimplementability predicate on process

terms, which tags inconsistent speci�cations. The utility of LPC is demonstrated by means of an example

highlighting the bene�ts of heterogeneous system speci�cation.

Key words. heterogeneous speci�cation, must{testing, process algebra, temporal logic, testing theory

Subject classi�cation. Computer Science

1. Introduction. Over the past two decades, a wealth of approaches to formally specifying and rea-

soning about reactive systems have been introduced. Most of these may be classi�ed according to whether

they are based on process algebra [3] or temporal logic [27]. The process{algebraic paradigm is founded on

notions of re�nement, where one typically formulates a system speci�cation and its implementation in the

same notation and then proves that the latter re�nes the former. The underling semantics is usually given

operationally, and re�nement relations are formalized as preorders. In contrast, the temporal{logic paradigm

is based on the use of temporal logics [27] to formulate speci�cations, with implementations being given in

an operational notation. One then veri�es a system by establishing that it is a model of its speci�cation, in

the formal logical sense. The strength of the former paradigm is its support for compositional reasoning, i.e.,

one may re�ne system components independently of others. The bene�t of the latter paradigm originates in

its support for abstract speci�cations, where irrelevant operational details may be ignored. Both approaches

may be given automated support in the form of model checking when the considered systems are �nite{state.

The objective of this paper is to develop a compositional theory for heterogeneous speci�cations that

uniformly integrates both re�nement{based and temporal{logic speci�cation styles, thereby allowing both

approaches to be taken advantage of when designing systems. Accordingly, we present a novel Logical

Process Calculus (LPC) that combines the algebraic operators of Milner's Calculus of Communicating Systems

(CCS) [25] with the logical operators of the Alternation{Free Linear{Time �{Calculus (LT�) [32]. More

precisely, we show that logical disjunction in LT� may be understood as internal choice, complementing
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the external choice operator in CCS, and logical conjunction in LT� as synchronous parallel composition,

complementing asynchronous parallel composition in CCS. Moreover, LT� is equipped with two recursion

operators, a least �xed{point operator and a greatest �xed{point operator, which allow for the �nite but

unbounded, and the in�nite, unwinding of recursion, respectively. The behavior described by the greatest

�xed{point operator in LT� thus corresponds to recursion in CCS. In the light of this discussion, LPC extends

CCS by operators for disjunction, conjunction, and minimal �xed{points, as well as the basic processes true

and false, and thereby allows for the encoding of both LT� formulas and CCS processes in LPC (cf. Sec. 2).

The semantics of LPC is based on the testing approach of DeNicola and Hennessy [11]. The hallmarks of

this theory are the use of transitions to model both processes and tests and the di�erentiation of processes

on the basis of their responses to tests. Accordingly, we equip LPC terms with a transition relation de�ning

the single{step transitions that speci�cations may engage in. We also introduce a novel unimplementabil-

ity predicate on terms whose role is to identify inconsistent speci�cations, such as false, that cannot be

implemented. Both the transition relation and the unimplementability predicate are de�ned via structural

operational rules, i.e., in a syntax{driven fashion. We then carry over the de�nitions of must{testing in [11]

to our setting and show that the resulting behavioral preorder (i) conservatively extends the traditional

must{preorder between CCS speci�cations; (ii) is compositional for all operators in LPC; and (iii) naturally

encodes the standard satisfaction relation between CCS processes and LT� formulas (cf. Sec. 3). Thus, our

framework may be seen to unify re�nement{based and logic{based approaches to system speci�cation, while

facilitating component{based reasoning. Technically, this expressiveness follows from the mathematically

coherent inclusion of process and logical operators in LPC that is enabled by our treatment of unimple-

mentability (cf. Sec. 4). Practically, the theory allows system modelers to freely intermix operational and

declarative subspeci�cations using both system operators (e.g. parallel composition) and logical constructors

(e.g. conjunction). This gives engineers powerful tools to model system components at di�erent levels of

abstraction and to impose declarative constraints on the execution behavior of components (cf. Sec. 5).

2. A Logical Process Calculus. This section formally introduces our logical process calculus, LPC.

We �rst present its syntax and then de�ne its semantics via operational rules and a novel unimplementability

predicate. Finally, the calculus is equipped with a re�nement preorder on processes, which is an adaptation

of DeNicola and Hennessy's must{testing preorder [11].

2.1. Syntax of LPC. The syntax of LPC extends Milner's CCS [25] with disjunction, conjunction, and

least �xed{point operators. It also includes a process constant for the universal process true, while false

will be a derived process term in our calculus. Formally, let � be a countable set of actions, or ports, not

including the distinguished unobservable, internal action � . With every a 2 � we associate a complementary

action a. We de�ne � := fa j a 2 �g and take A to denote the set � [ �. Complementation is lifted to A
by de�ning a := a. As in CCS, an action a communicates with its complement a to produce the internal

action � . We let a; b; : : : range over A and �; �; : : : over A� := A[ f�g. The syntax of LPC is then de�ned

as follows:

P ::= 0 j tt j x j w j �:P j P + P j P _ P j P jP j P ^ P j
P n L j P [f ] j �x:P j �kx:P j �x:P

where k 2 N, x is a variable taken from some nonempty set V of variables, w is an in�nite word over A whose

inclusion will be discussed in the next section, set L � A is a restriction set, and f : A� ! A� is a �nite

relabeling. A �nite relabeling satis�es the properties f(�) = � , f(a) = f(a), and jf� j f(�) 6= �gj < 1. We
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de�ne L := fa j a 2 Lg and use the standard de�nitions for free and bound variables, open and closed terms,

guardedness, and contexts. We require for �xed{point terms �x:P , �kx:P , and �x:P that x is guarded in P .

Intuitively, �x:P stands for �nite unbounded unwindings of P , while �kx:P encodes �nite unwindings of P

bounded by k. A term is called alternation{free if every variable bound by a least (greatest) �xed{point �x:P

(�x:P ) does not occur free in a subterm �y:Q (�y:Q) of P . We refer to closed, guarded, and alternation{free1

terms as processes, with the set of all processes written as P. Finally, we denote syntactic equality by �.
While it is obvious that LPC subsumes all CCS processes, it is not immediately clear that it also encodes

all Alternation{Free Linear{Time �{Calculus (LT�) formulas [5]2. The syntax of LT� formulas is given by

the following BNF:

� ::= 0 j tt j � j x j hai� j � _ � j � ^ � j �x:� j �x:�

In our setting, LT� formulas will be interpreted over in�nite action sequences and also �nite ones leading to

deadlock. This is why the `deadlock formula' 0 is included in LT�. In LPC, � corresponds to the term �x:�:x

and the next operator `hai', for a 2 A, to the pre�x operator `a:'.

2.2. Semantics of LPC. The operational semantics of an LPC process P is given as a labeled transition

system hP;A� ;�!; #; P i, where P is the set of states, A� the alphabet, �!� P �A� � P the transition

relation, # � P our unimplementability predicate that is discussed below, and P the start state.

The transition relation is de�ned by the structural operational rules displayed in Table 2.1. For conve-

nience, we write P
��! P 0 instead of hP; �; P 0i 2�!. Note that, for the CCS operators, the semantics is

exactly as in [25]. As for the other constructs, tt can nondeterministically engage in any action transition,

or decide to deadlock (cf. Rules (True1) and (True2)). Process �:P may engage in action � and then behave

like P (cf. Rule (Act1)), and similarly the process described by the in�nite word aw may engage in its initial

action a and then behave like w (cf. Rule (Act2)). The reason for including process w is to enable the mod-

eling of arbitrary system environments within our calculus, including those exhibiting irregular behavior.

The summation operator + denotes nondeterministic external choice such that P + Q may behave like P

or Q, depending on which communication initially o�ered by P and Q is accepted by the environment (cf.

Rules (Sum1) and (Sum2)). Analogously, _ encodes disjunction or nondeterministic internal choice, i.e.,

process P _ Q determines internally, without consulting its environment, whether to execute P or Q (cf.

Rules (Dis1) and (Dis2)). Process P jQ stands for the asynchronous parallel composition of processes P

and Q according to an interleaving semantics with synchronized communication on complementary actions,

resulting in the internal action � (cf. Rules (Par1){(Par3)). Similarly, P ^ Q encodes the conjunction or

synchronous parallel composition of P and Q, with synchronization on all visible actions and interleaving

on � (cf. Rules (Con1){(Con3)). The restriction operator nL prohibits the execution of actions in L [ L

and, thus, permits the scoping of actions. Process P [f ] behaves exactly as P where actions are renamed

according to the relabeling f . The remaining rules de�ne the semantics of our least and greatest �xed{point

operators. The minimal �xed{point process �x:P �rst guesses some number k 2 N that determines how

often P might be unwound, as encoded by the process �kx:P (cf. Rules (Mu1) and (Mu2))3. Here, P [Q=x]

stands for the process P with all of its free occurrences of variable x substituted by Q. This account of �

1The restriction to alternation{free processes is made for continuity reasons that are elaborated on later.
2LT� is more expressive that linear{time temporal logic, so the limitation to alternation{free formulas does not impose

undue expressiveness restrictions.
3The presence of unbounded internal choice in Rules (True1) and (Mu1) presents problems for more denotational process

theories; in LPC it proves not to be problematic because of our exclusively operational orientation.
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Table 2.1

Operational semantics

True1
��

tt
��! a:tt

a 2 A True2
��

tt
��! 0

Act1
��

�:P
��! P

Act2
��

aw
a�! w

Sum1
P

��! P 0

P +Q
��! P 0

Sum2
Q

��! Q0

P +Q
��! Q0

Dis1
��

P _Q
��! P

Dis2
��

P _Q
��! Q

Par1
P

��! P 0

P jQ ��! P 0jQ Par2
Q

��! Q0

P jQ ��! P jQ0

Con1
P

��! P 0

P ^Q
��! P 0 ^Q

Con2
Q

��! Q0

P ^Q
��! P ^Q0

Par3
P

a�! P 0 Q
a�! Q0

P jQ ��! P 0jQ0 Con3
P

a�! P 0 Q
a�! Q0

P ^Q
a�! P 0 ^Q0

Res
P

��! P 0

P n L ��! P 0 n L � =2 L [ L Rel
P

��! P 0

P [f ]
f(�)�! P 0[f ]

Mu1
��

�x:P
��! �kx:P

k 2 N Mu2
P [�k�1x:P=x]

��! P 0

�kx:P
��! P 0

k > 0

Nu
P [�x:P=x]

��! P 0

�x:P
��! P 0

may be seen as embodying a form of continuity : � is interpreted in terms of its �nite unwindings. Because

of continuity problems associated with alternating least and greatest �xed points, in this paper we only

consider alternation{free process expressions. The maximal �xed{point process �x:P may unwind its loop

inde�nitely, as is the case for recursion in CCS (cf. Rule (Nu)). Note that the purely divergent process 
,

employed in some process algebras [16] for describing in�nite internal computation, can be derived in LPC

as �x:�:x.

Temporal logics, including LT�, are capable of specifying inconsistencies or contradictions, i.e., behav-

iors equivalent to false. From an operational point of view, a process describing an inconsistency is not

implementable, and thus runs of processes passing through unimplementable states should be ignored. Due

to nondeterministic choice, a process that can engage in such runs is not necessarily unimplementable itself.

It is only unimplementable if all of its runs must pass through an unimplementable state. This intuition is

re
ected in the de�nition of our unimplementability predicate, given in Table 2.2, where we write P # for
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Table 2.2

Unimplementability predicate #

1. �0x:P #

2. P �! and P ^Q 6�! implies P ^Q#

3. Q �! and P ^Q 6�! implies P ^Q#

4. P # implies

� �:P # � P [f ] # � P n L#

� P ^Q# � Q ^ P #

� P jQ# � QjP #

� �x:P # � �x:P # � �kx:P #
5. P # and Q# implies

� P +Q# � P _Q#

6. P [�k�1x:P=x] # implies �kx:P #, for k > 0

7. (8k: �kx:P #) implies �x:P #

P 2 # and where P �! stands for 9P 0 2 P 9� 2 A� : P
��! P 0. In particular, a contradiction is present

within a conjunction P ^Q, if the conjunction process cannot engage in any transition, although one of its

argument processes can (cf. Rules (2) and (3)). As an example, consider process a:0^b:0, for a 6� b. Further,

Rule (1) states that the unimplementability of P propagates backwards through pre�xing. Note that the

operational semantics for LPC distinguishes between inconsistent processes that are unimplementable and

deadlocked processes that are implementable. For example, both processes (a:0jb:0) n fa; bg and a:0 ^ b:0

cannot engage in any transitions. However, (a:0 ^ b:0)# while :(((a:0jb:0) n fa; bg)#), as desired. All other
rules are straightforward, except for least �xed{point processes, such as the process �0x:P that cannot un-

wind its body P further and is thus considered to be unimplementable (cf. Rule (1)). Together with Rules (6)

and (7), this implies that the process �x:�:x, which can engage in �nite but unbounded numbers of � 's, is

actually unimplementable. Indeed, we will identify this process with false and abbreviate it by �. Finally,

it is easy to prove via induction on the structure of process terms that P
��! P 0 and P # implies P 0#, for

any P; P 0 2 P and � 2 A� .

The semantics for LPC does not only extend the standard CCS semantics but is also compatible with

the semantics of LT� formulas; see Thm. 3.5. This theorem, however, is not straightforward, and its proof

requires us to build a rich semantic theory for LPC. Before doing so we �rst introduce some notation. A

potential path � of process P is a sequence of transitions (Pi
�i�! Pi+1)0�i<k , for some k 2 N[f!g, such that

P0 � P . If :(Pi#), for all 0 � i < k, then � is called an implementable path, or simply path. We use j�j to
refer to k, the length of �. If j�j = !, we say that � is in�nite; otherwise, � is �nite. Moreover, � is called

maximal if j�j < ! and Pj�j 6�!. The trace trace(�) of � is de�ned as the word w := (�i)I� 2 A1 := A�[A! ,

where I� := f0 � i < j�j j�i 6� �g. In the case of I� = ;, we let � stand for w = (). Moreover, if � is �nite,

we also write P
w
=) Pj�j for �. We denote the sets of all �nite, maximal, and in�nite paths of P by ��n(P ),

�max(P ), and �!(P ), respectively. We may also introduce according languages for P :

L�n(P ) := ftrace(�) j� 2 ��n(P )g � A� �nite{trace language of P

Lmax(P ) := ftrace(�) j� 2 �max(P )g � A� maximal{trace language of P

L!(P ) := ftrace(�) j� 2 �!(P )g � A1 in�nite{trace language of P

The semantic theory to be developed for LPC relies on the notion of divergence, i.e., a system's ability to

engage in an in�nite internal computation. In this paper, we employ the traditional notion of divergence
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as used by DeNicola and Hennessy [11]; more sophisticated de�nitions may be found elsewhere in the

literature [6, 26, 28]. A process P is divergent, in signs P *, if � 2 L!(P ). For example, the process


 := �x:�:x, is divergent. A process P is called w{divergent for some w 2 A1, in signs P * w, if

9P 0 2 P 9v <�n w: P
v

=) P 0 and P 0 *. Here, <�n stands for the pre�x ordering on words. We further

write Ldiv(P ) for the divergent{trace language of P , i.e., Ldiv(P ) := fw 2 A1 jP * wg. Finally, P is called

convergent or w{convergent, in symbols P + and P + w, if :(P *) and :(P * w), respectively.

2.3. Re�nement in LPC. We now turn our attention to a behavioral theory of LPC, which de�nes a

behavioral preorder @� on processes such that P @�Q, i.e., Q re�nes P , if Q is \more de�ned" than P . The

preorder is an adaptation of DeNicola and Hennessy's must{preorder [11], which was developed within an

elegant testing theory and distinguishes processes on the basis of the tests they are necessarily able to pass.

In this context, tests are processes equipped with a special action
p
, which are employed to witness the

interactions a process may have with its environment. In order to determine whether a process passes a test,

one has to examine the maximal and in�nite computations that result when the test runs in lock{step with

the process under consideration.

Formally, a test is a process that might use the distinguished success action
p

=2 A� . The set of all tests

is denoted by T . A maximal (in�nite) computation � of process P and test T is a maximal (in�nite) path �

of (P jT )nA, i.e., � = ((PijTi) n A ��! (Pi+1jTi+1) n A)0�i<j�j. Recall that paths only go along implementable
states. Computation � is successful if Tk

p
�! for some 0 � k < j�j; otherwise, it is unsuccessful. Finally,

process P is said to must{satisfy test T , in symbols P mustT , if every maximal and in�nite computation

of P and T is successful. Our variant of the must{preorder can now be de�ned as follows.

Definition 2.1 (Must{preorder). For P;Q 2 P we let P @�Q if, for all T 2 T , P must T implies

Qmust T .

It is easy to see that @� is a preorder, i.e., that it is re
exive and transitive. Note that this preorder can be

extended to open terms by the usual means of closed substitution [25]. Moreover, @� satis�es the following

basic algebraic laws, where � stands for the kernel @� \ (@�)�1 of @�.
Proposition 2.2. Let P;Q;R 2 P. Then, the following holds:

P jQ � QjP (P jQ)jR � P j(QjR) P j0 � P P j
 � 


P ^Q � Q ^ P (P ^Q) ^ R � P ^ (Q ^R) P ^ tt � P P ^ � � �

P +Q � Q+ P (P +Q) +R � P + (Q+R) P + 0 � P P +
 � 


P _Q � Q _ P (P _Q) _ R � P _ (Q _R) P _ tt � tt P _ � � P

Further, P ^ P � P , P _ P � P , and P _Q @� P .

It is also easy to see that the divergent process 
 does not must{satisfy any tests, except the trivial ones,

such as
p
:0. Hence, it is the smallest process with respect to @�. Conversely, process � must{satis�es every

test, since it does not possess any computation due to �#. Consequently, � is the largest process with

respect to @�. Also tt is a distinguished process in our setting; it is the smallest convergent process with

respect to @�. Thus, we have 
 @� tt @��4.

4This ordering is the reverse of the more usual Boolean ordering, which holds that � is lower than tt. Our ordering is due

to the fact that must re�nement implies reverse language containment.
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3. Properties of the Must{Preorder. In this section we investigate the utility of our calculus for the

heterogeneous speci�cation of reactive systems. We show that our must{preorder is a conservative extension

of the one of DeNicola and Hennessy, provide its characterization in terms of traces and initial action sets,

investigate its close relation to LT� satisfaction, and �nally establish its compositionality properties.

3.1. Extension of DeNicola and Hennessy's Must{Preorder. It is easy to see that our must{

preorder @� is a conservative extension of the original must{preorder @�DH of DeNicola and Hennessy, de�ned

on CCS processes [11]. The reason is that their and our de�nitions of the testing framework coincide on CCS

processes. Hence, we may formally obtain the following conservativity theorem.

Theorem 3.1. Let P;Q be CCS processes. Then, P @�Q if and only if P @�DHQ.

3.2. Characterization. We now present a characterization of our must{preorder which will be used for

obtaining some of our main results. The characterization closely follows the lines of a similar characterization

of DeNicola and Hennessy's must{preorder [11]. It uses the notation I(P ) for the set fa 2 A jP ��!� a�!g
of visible initial actions of P .

Theorem 3.2. Let P;Q be processes. Then P @�Q if and only if for all w 2 A1 such that P + w :

1. Q + w

2. jwj < !: 8Q0: Q w
=) Q0 implies 9P 0: P w

=) P 0 and I(P 0) � I(Q0)
jwj = !: w 2 L!(Q) implies w 2 L!(P )

Observe that this characterization is also sensitive to in�nite traces and not only �nite ones (cf. Cond. (2)).

This is super�cially similar to the improved failures model of [7]; the di�erence is that in�nite traces in [7]

convey divergence information, while they convey convergence information in the above characterization.

The proof of the above theorem relies on the following four distinguished tests, where k 2 N, w =

(ai)0�i<k 2 A�, v 2 A!, and a 2 A.
1. T+w := a0:a1: � � � :ak�1:0 j �:p:0
2. T �n

w := a0:(a1: � � � :(ak�1:0+ �:
p
:0) � � � ) + �:

p
:0) + �:

p
:0

3. Tmax
w;a := a0:(a1: � � � :(ak�1:a:p:0+ �:

p
:0) � � � ) + �:

p
:0) + �:

p
:0

4. T!
v := v j �:p:0

The intuitions behind de�ning these tests are as follows.

Lemma 3.3. Let P be an arbitrary LPC process and

1. Let w 2 A�. Then, P + w i� P mustT+w .

2. Let w 2 A� such that P + w. Then, w =2 L�n(P ) i� P mustT �n
w .

3. Let w 2 A� such that P + w. Then, w =2 Lmax(P ) i� 9a 2 A: P mustTmax
w;a .

4. Let v 2 A! such that P + v. Then, v =2 L!(P ) i� P mustT!
v .

The proof of this lemma is not too di�cult but tedious; it follows our de�nition of must{passing tests and

is similar to the corresponding proof in [9]. Note that the �rst property can also be carried over to in�nite

words, due to our `approximative' de�nition of divergence.

3.3. Extension of LT� Satisfaction. To prove that our must{preorder is also an extension of LT�

satisfaction we �rst recall the standard semantics of LT�. An LT� formula is interpreted as the set of those

�nite and in�nite sequences over A that validate the formula. Formally, the semantics [[�]]E of a possibly
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open LT� term � is de�ned relative to an environment E mapping variables to subsets of A1. Note that

our variant of the linear{time �{calculus [5] can be used to reason about deadlock traces as well, due to our

inclusion of the atomic proposition 0; this is why we also consider �nite traces, in addition to in�nite ones.

[[tt]]E := A1 [[�]]E := ; [[x]]E := E(x)
[[hai�]]E := faw jw 2 [[�]]Eg [[0]]E := f�g
[[�x:�]]E :=

TfT � A1 j [[�]]E[x7!T ] � Tg [[�1 ^ �2]]
E := [[�1]]

E \ [[�2]]
E

[[�x:�]]E :=
SfT � A1 jT � [[�]]E[x7!T ]g [[�1 _ �2]]

E := [[�1]]
E [ [[�2]]

E

In case � is a formula, i.e., � is a closed LT� term, it is easy to see that the environment E is irrelevant. We

say that a CCS process P satis�es �, in signs P j= �, if all traces of P are included in the traces of [[�]].

Formally, P j= � if (i) Ldiv(P ) � Ldiv(�), (ii) Lmax(P ) � [[�]], and (iii) L!(P ) � [[�]].

Further, LT� formulas, when considered as a sublanguage of LPC, possess two important properties.

First, all formulas � are convergent, i.e., Ldiv(�) = ;. This is because the internal pre�x operator `�:' is

not available in LT�. In addition, the atomic propositions tt, �, and 0 do not give rise to divergence. As

a consequence, Cond. (i) in the de�nition of P j= � above can be simpli�ed to Ldiv(P ) = ;. In particular,

formula tt is satis�ed by convergent processes only, whence P j= tt if and only if Ldiv(P ) = ;. Second, every
LT� formula � is purely nondeterministic in the sense that all choices are internal:

8�0;�00 8�; �: � ��! �0; �
��! �00; �0 6� �00 implies � � � � � :

This is due to the fact that disjunction is modeled as internal choice in LPC.

Proposition 3.4. Let � be an LT� formula and P a CCS process. Then, � @�P if and only if

(i) Ldiv(P ) = ;, (ii) Lmax(P ) � Lmax(�), and (iii) L!(P ) � L!(�).
The proof of this proposition relies on our characterization theorem for @� (cf. Thm. 3.2) and uses the two

properties of formulas mentioned above. The proposition is the key for establishing the next theorem.

Theorem 3.5. Let P be a CCS process and � an LT� formula. Then, P j= � if and only if � @�P .

Due to Prop. 3.4 and the de�nition of j=, it is su�cient to prove that [[�]] = Lmax(�) [ L!(�). This can

be done along the structure of LT� formulas, but requires the appropriate extension of the de�nition of

languages to open terms.

3.4. Compositionality. One virtue of process algebras is that they allow for reasoning compositionally

about processes. Our logical process calculus LPC is no exception. Indeed our must{preorder is compositional

for all operators, except for the choice operators + and _. This compositionality defect manifests itself in

many behavioral preorders, including DeNicola and Hennessy's must{preorder. The largest precongruence v
contained in @� can be obtained in the standard fashion [11].

Definition 3.6 (Must{precongruence). For P;Q 2 P we write P v Q if (i) P @�Q and (ii) Q
��!

implies P
��!.

We can now establish the desired compositionality result.

Theorem 3.7. The preorder v is a precongruence, i.e., for all processes P;Q such that P v Q, the

following properties hold:
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� �:P v �:Q for all � 2 A � P n L v Q n L for all restriction sets L

� P +R v Q+R for all R 2 P � P [f ] v Q[f ] for all relabelings f

� P _ R v Q _ R for all R 2 P � �kx:P v �kx:Q for all x 2 V and k 2 N

� P jR v QjR for all R 2 P � �x:P v �x:Q for all x 2 V
� P ^ R v Q ^ R for all R 2 P � �x:P v �x:Q for all x 2 V

Moreover, v is the largest precongruence contained in @�.
The compositionality property can be checked straightforwardly for most operators by referring to Thm. 3.2.

For asynchronous parallel composition, the compositionality of v follows immediately from the fact that

P jQmustT if and only if P mustQjT , for all P;Q 2 P and T 2 T ; this is essentially the associativity

property of j . The proof of the `largest' statement of Thm. 3.7 is standard [11].

4. Discussion and Related Work. This section compares LPC to related work and discusses in some

detail the fundamental di�erences of the setting presented in this paper to our previous approach [9].

Most early related work couples operational and declarative approaches to system speci�cation loosely

and does not allow for mixed speci�cations. This includes the large amount of work on relating behavioral

equivalences or preorders to temporal logics in one of the following ways: (i) establishing that one system

re�nes another if and only if both satisfy the same temporal formulas [12, 17, 25, 31]; (ii) translating �nite{

state labeled transition systems into temporal formulas [30]; or (iii) encoding subclasses of temporal formulas

as behavioral relations via the idea of implicit speci�cations [23]. Other work, in the �eld of compositional

model checking [8, 14, 20] is aimed at supporting a modular approach for reasoning about temporal{logic

speci�cations. Several researchers have also considered the inclusion of di�erent �xed{point operators in

behavioral theories of processes in order to model fairness and unbounded but �nite delay [15, 18]. One may

also �nd a process algebra with an element similar to our process � in [2].

Diverting from these approaches, advanced frameworks for genuine heterogeneous speci�cations have

been developed as well, which can be distinguished whether they are logic/algebraic or automata{theoretic.

4.1. Logic/algebraic approaches. This category includes the seminal work of Abadi and Lamport,

who have developed ideas for heterogeneous speci�cations for shared{memory systems [1]. Their technical

setting is the logical framework of TLA [22], in which processes and temporal formulas are indistinguishable

and logical implication serves as the re�nement relation. The di�erence to our setting is that TLA re�nement

is insensitive to deadlock and divergence. While this might not be a problem for shared{memory systems, it is

not suitable for reasoning about distributed systems, at which our calculus LPC aims. Graf and Sifakis follow

a similar line in [13]. There, a logic is developed that includes constructs for actions and nondeterministic

choice, and a logical encoding of operational behavior is given. One establishes that a system satis�es a

property by showing that the logical formula associated with the system implies the property.

In a di�erent line of research, Valmari et al. have studied several congruences preserving \next{time{

less" linear{time temporal logic [27], which may also handle deadlock and livelock [19, 28, 33]. A good

overview by Puhakka and Valmari on the matters of liveness and fairness in process algebra can be found

in [29]. This paper also observes that, during system re�nement, fairness constraints are often only relevant

for intermediate systems and are automatically implied when considering the larger system context. It then

suggests a way to avoid constructing the usually in�nite intermediate systems. Our work complements theirs

in that LPC allows for embedding arbitrary LTL formulas in operational speci�cations, instead of a speci�c
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class of fairness constraints. However, LPC does not avoid reasoning about in�nite intermediate systems, since

we believe that such reasoning poses no problem when employing clever data structures for implementing

our must{preorder in veri�cation tools. Finally, note that DeNicola and Hennessy's testing theory [11] has

also been enriched with notions of fairness [6, 26] to constrain in�nite computations in transition systems.

4.2. Automata{theoretic approaches. Regarding automata{theoretic techniques, the work of Kur-

shan [21], who presented a theory of !{word automata that includes notions of synchronous and asynchronous

composition, is of direct relevance to this paper. However, Kurshan's underlying semantic model maps pro-

cesses to their in�nite traces, and the associated notion of re�nement is (reverse) trace inclusion. In theories of

concurrency, such as in ours in which deadlock is possible, maximal trace inclusion is not compositional [24].

The most closely related approach to the one presented here was introduced by the authors in [9]. B�uchi

automata were employed to uniformly encode mixed operational and declarative behavior, exploiting the

well{known relation between B�uchi automata and LTL [34]. We equipped this semantic framework with

a notion of B�uchi must{testing that extends DeNicola and Hennessy's must{testing preorder from labeled

transition systems to B�uchi automata. The intuition was only to consider those in�nite traces as in�nite

computations that go through B�uchi states in�nitely often, and only to accept those in�nite computations for

which the considered B�uchi test declares success in�nitely often. The relation of our B�uchi must{preorder

to the LTL satisfaction relation, with the central result intended to be analogous to Thm. 3.5, was then

established in a pure automata{theoretic fashion by suitably adapting the construction of [34]. However,

our previous approach had several shortcomings which made it unsuitable as a semantic basis for a logical

process calculus; these are discussed next.

Most importantly, our paper [9] contained a subtle technical mistake in the analogue of Lemma 3.3,

which propagated through the paper's results. In a nutshell, the setup of B�uchi testing did not allow us, as

was intended, to ignore non{B�uchi divergent traces, i.e., those in�nite internal computations that go through

B�uchi states only �nitely often. While most of the results of [9] could be repaired by explicitly observing non{

B�uchi divergence, the framework did no longer re
ect the underlying intuition, and it made compositionality

di�cult to achieve for some operators, including parallel composition. Moreover, our identi�cation of �,

or other inconsistent speci�cations, with non{B�uchi divergence lead to the invalidity of the desired law

P _ � � P . The present paper repairs this defect by associating � with a process that cannot engage in

any observable transition, nor in any divergence. In order to then distinguish � from, say, 0 we introduced

the unimplementability predicate. Similar di�culties arose when interpreting tt as B�uchi{divergent process,

which is why this paper distinguishes between tt and 
, making tt the smallest convergent process with

respect to our must{preorder, while 
 is still the smallest process overall.

Indeed, the collection of these insights also allowed us to do away with B�uchi automata as our semantic

framework for heterogeneous system design altogether. Accordingly, LPC encodes the least and greatest

�xed{points occurring in temporal logics via labeled transition systems, where the process{algebraic semantic

rules for least �xed{points re
ect the intuition that the recursion under consideration can only be unwound

�nitely often, while a recursion associated with a greatest �xed{point may be unwound in�nitely often.

Hence, in LPC all in�nite traces are `good', which means that the expressive power of B�uchi automata to

distinguish `good' and `bad' in�nite traces is no longer needed. The result is a process calculus, LPC, in which

classical process algebras and linear{time temporal logics can be uniformly integrated, as was envisioned

in [9]. The integration is mathematically elegant, as testi�ed by our compositionality and conservative

extension results that were established in a pure syntax{driven manner.
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5. Example: Heterogeneous System Design. This section illustrates, by means of an example, the

kind of re�nement{based system design supported by LPC. The example advocates a heterogeneous style of

system speci�cation, combining process{algebraic and temporal{logic speci�cations, and thereby testi�es to

the utility of our calculus. It will be convenient to express temporal constraints by means of formulas in

Linear{time Temporal Logic (LTL) [27] | a temporal logic that engineers often prefer over the linear{time

�{calculus [5]. We thus brie
y show how LTL formulas can be encoded in LT� or, more precisely, in our new

calculus LPC.

5.1. Encoding of LTL in LPC. Since we would like to describe action{based distributed systems and

their deadlock behavior, the variant of LTL studied here includes the atomic propositions a, for a 2 A, and 0.
Note that, in the context of temporal logics, A is always taken to be a �nite set.

� ::= 0 j a j tt j � j � _� j � ^ � j X� j X̂� j �U� j �V�

The temporal operators X, U, and V are intuitively interpreted as next, until, and release operators, respec-

tively. Operator X̂ is the dual operator of X, which is a next operator that tolerates deadlocks; note that X

is not self{dual in the presence of �nite traces. An LTL formula � corresponds to the LPC process f[�]g,
where the translation function f[�]g is de�ned inductively along the structure of � as follows and where x is

some randomly chosen variable in V.

f[tt]g := tt f[0]g := 0 f[�1 _ �2]g := f[�1]g _ f[�2]g f[X�]g := Wa2A a:f[�]g
f[�]g := � f[a]g := a:tt f[�1 ^ �2]g := f[�1]g ^ f[�2]g f[X̂�]g := 0 _ Wa2A a:f[�]g

f[�1U�2]g := �x:f[�2]g _ (f[�1]g ^ Wa2A a:x)

f[�1V�2]g := �x:f[�2]g ^ (f[�1]g _ 0 _ Wa2A a:x)

For convenience, we abbreviate formula �V� by G� (\generally �") and ttU� by F� (\eventually �"), as

usual. Moreover, we let a =) � stand for the process a:� _ 0 _ Wa6�b b:tt that is valid if and only if, for

all traces of the form aw, trace w satis�es � .

5.2. Example. Suppose an engineer is expected to design a reliable bidirectional network link in a

component{based fashion. One might think of this link as a composition of two reliable unidirectional links

that are closely tied together. In particular, the failure of one unidirectional link should imply the failure

of the other, which is a typical physical constraint of bidirectional links. The engineer might begin with a

simple speci�cation of an unreliable unidirectional link,

ULSpec := �x:up:(x+ fail:�y:down:(y _ x)) ;

which signals whether the link is up or down, or whether it just failed. In case of failure, the link tries to

repair itself and, if and once it is successfully repaired, it returns to its initial state. However, a successful

repair is not guaranteed, whence the process ULSpec may in�nitely engage in the down{loop over variable y.

To obtain a speci�cation RLSpec of a reliable unidirectional link, ULSpec is simply re�ned by adding

a constraint imposing a \repair guarantee," RG := G (fail =) F up), i.e., every broken link is eventually

repaired and up. We then de�ne RLSpec := ULSpec ^ RG, which essentially does away with the down{loop
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in ULSpec. The desired bidirectional link might then be speci�ed as follows:

BLSpec := ( RLSpec[up1=up; down1=down; sync=fail]

j RLSpec[up2=up; down2=down; sync=fail]
) n fsyncg ;

where the synchronization on action fail, via the relabeling to action sync, ensures that the failure of

one unidirectional link implies the failure of the other. Note that the constraints RG indirectly refer to

action sync, which is restricted in BLSpec.

The engineer may now re�ne the heterogeneous LPC speci�cation BLSpec into a pure CCS implementa-

tion. The idea is to ful�ll the constraints RG by eliminating the down{loop in ULSpec, thus encoding that a

repair can always be successfully carried out immediately. The implementation of RLSpec might accordingly

be chosen as the CCS process RLImp := �x:up:(x+fail:down:x). We now establish that RLImp indeed re�nes

RLSpec in the framework of our must{precongruence. First of all, it is easy to see by our characterization of @�
(cf. Thm. 3.2) that ULSpec @� RLImp, due to the internal nondeterministic choice in ULSpec. Further, we ob-

viously have RLImp j= RG. Hence, we may infer by Thm. 3.5 that RG @� RLImp. Because RLImp cannot engage

in an initial �{transition, we may in summary conclude ULSpec v RLImp and RG v RLImp. By Prop. 2.2,

which is also valid for v, and by Thm. 3.7, we derive RLSpec � ULSpec^ RG v RLImp^ RLImp v RLImp, as

desired.

When replacing in BLSpec the components RLSpec by RLImp we obtain an implementation of our reliable

bidirectional link, to which we refer as BLImp. Since v is a precongruence and RLSpec v RLImp, we obtain

BLSpec v BLImp, i.e., BLImp re�nes BLSpec, which coincides with our intuition.

Finally, it is worth mentioning that LPC actually may be seen as a temporal logic that allows for some

restricted form of branching{time reasoning. For example, the LPC process sync =) (down1:tt+ down2:tt)

encodes the property that the system state reached when executing action sync has both actions down1

and down2 enabled. Observe that, in contrast to down1:tt + down2:tt, the term down1:tt ^ down2:tt in LPC

speci�es the obvious contradiction that every initial transition is labeled by both actions down1 and down2

at the same time.

6. Conclusions and Future Work. We presented a novel logical process calculus LPC that integrates

both classical process calculi, such as Milner's CCS, and temporal logics, such as the alternation{free linear{

time �{calculus LT�. The syntax of LPC enriched CCS by operators for synchronous parallel composition

(conjunction) and nondeterministic choice (disjunction), as well as by minimal �xed{points operators (�nite

unwindings of recursion). The semantics of LPC was given in terms of labeled transition systems and an

unimplementability predicate, both de�ned via structural operational rules. A re�nement preorder on process

terms was then introduced, which conservatively extends both DeNicola's and Hennessy's must{preorder and

the LT� satisfaction relation. Hence, LT� model checking may as well be understood as re�nement checking.

Finally, our must{preorder was also shown to be compositional with respect to all operators in LPC.

The outcome of our studies is a heterogeneous speci�cation language, which allows system designers to

specify systems in a mixed operational and declarative style, together with a behavioral preorder that permits

component{based re�nement. We believe that our setting provides groundwork for formally investigating

those software engineering languages that support heterogeneous speci�cations as a mixture of operational

state machines and declarative constraints, such as the Uni�ed Modeling Language [4].
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Regarding future work, we intend to study axiomatizations of our must{preorder. We also plan to

develop an algorithm for computing the must{preorder with the goal of implementing LPC in automated

veri�cation tools, such as the Concurrency Workbench NC [10].
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